© by Springer-Verlag 1989

Beiträge zur Chemie der Pyrrolpigmente, 81. Mitt. [1]: Kraftfeldrechnungen an Gallenfarbstoffen: Die Energiehyperfläche von 2,3-Dihydrobilin-1,19-dionen

Heinz Falk*, Norbert Müller und Gabriele Streßler

Institut für Chemie, Johannes-Kepler-Universität Linz, A-4040 Linz, Austria

On the Chemistry of Bile Pigments: Force-Field Calculations on Bile Pigments: The Energy Hypersurface of 2,3-Dihydrobilin-1,19-diones

Summary. The energy hypersurface of 2,3-dihydrobilin-1,19-diones is analyzed with respect to their conformational aspects using a specialized force field. Estimations of helix interconversion energies, chiral discrimination, geometries of global minima, and relative energies and geometries of diastereomeres compare favourably with available experimental data from the literature.

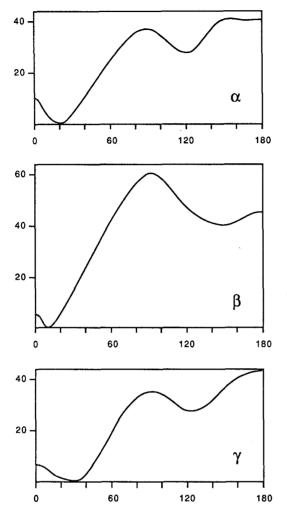
Keywords. 2,3-Dihydrobilin-1,19-diones; Force-field calculations; Conformational analysis; Energy hypersurface.

Einleitung

In vorangegangenen Mitteilungen wurde ein Kraftfeld für die energetische und geometrische Beschreibung von linearen Oligopyrrolen entwickelt [2-4], an geeigneten Systemen parametrisiert und zur Untersuchung der besonderen Fragestellungen in der Konformationsanalyse bipyrrolischer [5], tripyrrinischer [3, 5], rubinoider [3, 6] und verdinoider [3, 7] Pigmente herangezogen. Nunmehr sollen die strukturellen und energetischen Aspekte an 2,3-Dihydrobilindionen, die das chromophore System der Antennenpigmente photosynthetisierender Bakterien und Algen, wie auch des ubiquitären pflanzlichen Photomorphogenese-Rezeptors Phytochrom bilden [8], behandelt werden.

Methodik

Die Berechnung interessierender Ausschnitte aus der Energiehyperfläche des 2,3-Dihydrobilin-1,19-dions erfolgten mit dem früher beschriebenen und parametrisierten Kraftfeldmodell für lineare Oligopyrrole [2-4]. Als Bindungslängen und Bindungswinkel der Startgeometrie setzte man die aus der röntgenstrukturanalytischen Untersuchung von 2,3-Dihydrobilindionderivaten [9] abgeleiteten Werte ein. Für die Auffindung der globalen Minima optimierte man unter stufenweiser Freigabe zusätzlicher Torsions-Winkel. Dies erwies sich im Falle der 2,3-Dihydrobilindione als wesentlich aufwendiger als für die Bilindione, da die Energiehyper-


H. Falk et al.

fläche der ersteren eine Vielzahl an Nebenminima aufweist, zwischen denen zumeist nur geringe Barrieren bestehen. Die interne Beweglichkeit des 2,3-Dihydropyrrolinonfragmentes wurde ebenfalls teilweise freigegeben (Pseudorotation von Fünfringen!) und durch "Pseudoalkylgruppen" simuliert, wobei die Winkel ψ_1 und ψ_2 hinsichtlich ihrer Torsion durch das Potential E(t) = 1.3 [$1 + \cos(3\psi) \cdot \pi/180$] eingeschränkt wurden (siehe Formelbild). Dies simuliert eine "virtuelle" Ringbildung zwischen den Positionen 2 und 3. Als Partialdipolmoment des Fragmentes setzte man das experimentelle Dipolmoment des 2-Pyrrolidinons von 2.3 D [10] mit einer senkrechten Orientierung auf das Zentrum der C-N-Bindung ein. Um die prinzipielle Anwendbarkeit dieser Näherung abzusichern, führte man abschätzende Rechnungen an den 2,2-Dimethyl- und 3,3-Dimethyl-2,3-dihydrodipyrrin-1-on Diastereomeren aus. Ihre Konformation erweist sich dabei als praktisch planar. Die globalen Minima unterscheiden sich im ersten Fall um $1.3 \, \text{kJ/mol}$ und im zweiten um $9.2 \, \text{kJ/mol}$ – jeweils zugunsten des (Z)-Diastereomeren – was in Übereinstimmung mit der experimentellen Erfahrung [11] steht.

Ergebnisse und Diskussion

Konformationsanalytische Aspekte

Im Gegensatz zu den Bilin-1,19-dionen [3, 7] erhält man bei Variation der Diederwinkel α , β und γ und der Bindungswinkel im Falle eines einfachen 2,3-Dihydrobilin-1,19-dions eine Vielzahl wenig unterschiedener Nebenminima. Das globale Minimum der Hyperfläche von 1 bei konstanten Bindungslängen und Bindungswinkeln, wie sie aus röntgenstrukturanalytischen Daten vorliegen [9], findet sich bei Variablenwerten von $\alpha = 24$, $\beta = 14$ und $\gamma = 16$ Grad.

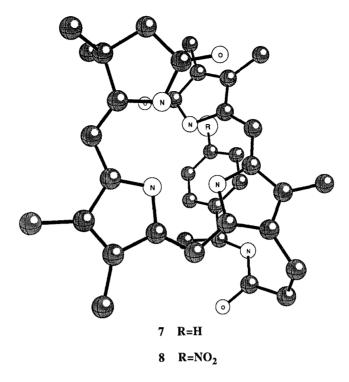
Abb. 1. Energieprofile (kJ/mol) für Rotationen um die Diederwinkel a, β und γ (0 – 180°) für 1

Geminale Methylierung in Position 2, wie dies für **2** gegeben ist, ändert an diesen Werten nur wenig. Dessen Konformation ist durch die Diederwinkel a=19, $\beta=16$ und $\gamma=21$ gekennzeichnet. Ebenso hat die Geminalalkylierung in Position 3, wie sie Verbindung **3** zeigt, keine weiterreichenden Konsequenzen für die stabilste Geometrie, wie dies die Diederwinkel a=23, $\beta=15$ und $\gamma=17$ Grad nachweisen. Diese Werte stehen in guter Übereinstimmung mit experimentellen Befunden [9, 12, 13].

Um jenen Bereich der Energiehyperfläche, der für Helixinterkonversionsprozesse maßgeblich ist, zu sondieren, führte man Energieminimierungen für Rotationsprofile durch. Diese wurden durch sukzessives Inkrementieren des jeweiligen Torsionswinkels a, β oder γ und Fixierung dieses Wertes für die Iteration unter Freigabe aller anderen geometrischen Variablen errechnet. Diese Ergebnisse sind in Abb. 1 zusammengefaßt.

Die Daten der Abb. 1 illustrieren unmittelbar die angesprochene kinetische Flexibilität der 2,3-Dihydrobilin-1,19-dione. Die Helixinterkonversion kann sehr einfach erzielt werden, indem die terminalen Laktamfragmente aneinander vorbeigeschoben werden, wenn $\beta = 0^{\circ}$ wird. Die Trajektorie, die diesen Vorgang beschreibt, erfordert, wie Abb. 1 für die Variation β zeigt, lediglich wenige kJ/mol.

H. Falk et al.


$$(M)$$

$$\alpha = N \quad HN \quad \gamma$$

$$\beta \qquad (P)$$

Dieses Ergebnis ist ebenfalls in guter Übereinstimmung mit der Experimentalerfahrung, nach der es bislang nicht möglich war, an dafür geeigneten Modellsystemen durch Tieftemperatur-NMR-Spektroskopie Hinweise auf eine Verlangsamung des Prozesses zu erhalten [13–17]. Wie Abb. 1 aber auch zeigt, ist ein solcher Interkonversionsprozeß über eine gestreckte Anordnung mit $\beta=180^\circ$ wegen der hohen Aktivierungsbarriere von etwa 60 kJ/mol extrem unwahrscheinlich. Abb. 1 ermöglicht aber auch eine Abschätzung des erforderlichen Energiebedarfs, um den 2,3-Dihydrobilatrienchromophor durch Torsion an α und γ so zu strecken, wie dies in den nativen Phycocyaninen beobachtet wird [20]. Für diesen Prozeß ergibt sich ein Aufwand von wenigstens 60 kJ/mol.

Um die Problematik der chiralen Diskriminierung aus der Sicht des Kraftfeldmodells zu beleuchten, führte man zunächst für 4 die Energieoptimierung für die beiden Diastereomeren mit (M) und (P)-Helizität durch. Dabei erhielt man globale Minima, die im Falle der (M)-Helix durch a=27, $\beta=9$ und $\gamma=27$ Grad und für die (P)-Helix durch a=-24, $\beta=-10$ und $\gamma=-29$ Grad charakterisiert sind. Die (P)-Helix erweist sich dabei um 0.3 kJ/mol stabiler als jene mit (M)-Konfiguration. Diese geringe Stabilisierung wird durch die Konfiguration der Chiralitätszentren in Positionen 2 und 3 verursacht, welche zu diastereomeren Van der Waals-Wechselwirkungen mit dem anderen Laktamfragment Anlaß geben. Dies bedeutet, daß Chiralitätszentren in 2-, bzw. 3-Position mit unpolaren Substituenten nur unwesentlich zur chiralen Diskriminierung beitragen. Substituiert man in Postion 3 formal eine Esterfunktion (wie dies in Verbindung 5 der Fall ist), so wird die chirale

Diskriminierung der (M)-Helix zugunsten der (P)-Helix wohl auf 1.2 kJ/mol erhöht, ist jedoch noch immer von untergeordneter Bedeutung, wie dies an einer verwandten Verbindung experimentell gezeigt worden ist $\lceil 18 \rceil$.

In einem weiteren Schritt substituierte man formal an die Acylgruppe von 5 in Position 3 den (S)-Tryptophanylrest, wobei 6 erhalten wird. Die Analyse der beiden Helixdiastereomeren ergibt eine Energiedifferenz von 7.9 kJ/mol, wobei wiederum jenes mit (M)-Helizität stabiler ist. Dieses Ergebnis stimmt mit der außerordentlich guten chiralen Diskriminierung überein, die im Falle eines zu 5 analogen Derivates experimentell belegt ist [19]: Hier treten zu den geringen Van der Waals- kräftige Dipol-Dipol-Wechselwirkungen, wie dies auch experimentell gefunden worden ist [19].

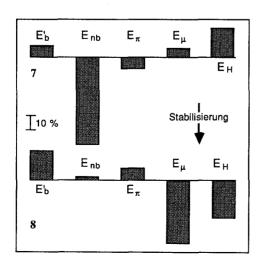
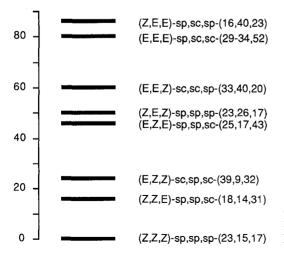


Abb. 2. Prozentuelle Energiedifferenzen der Kraftfeldkomponenten zwischen den Diastereomeren von 7 und 8 hinsichtlich ihrer Helizitäten

144 H. Falk et al.


Dieses Zusammenspiel von Van der Waals- und polaren Wechselwirkungen läßt sich auch am Verbindungspaar 7, 8 nachweisen: Dafür wird eine gefaltete Konformation gefunden (s. d. Ball-and-Stick-Formel [23]), in der Bilin-Chromophor und Arylrest — wie in der entsprechenden Formel gezeigt — einander gegenüberstehen. Die chirale Diskriminierung bei 7 beläuft sich auf $2.0 \, \text{kJ/mol}$, wobei bei (S)-konfiguriertem Chiralitätszentrum die (M)-Helix bevorzugt ist. Diese Stabilisierung wird im 4-Nitrophenylderivat 8 auf $9.0 \, \text{kJ/mol}$ verstärkt. Dieser generelle Trend wird auch experimentell gefunden [19]. Eine Analyse der einzelnen Komponenten, wie sie in Abb. 2 dargestellt ist, verdeutlicht die Ursache für dieses Phänomen: Für 7 liegt die Hauptursache für die chirale Diskriminierung in der Dispersions- und Van der Waals-Wechselwirkungen E_{nb} , wogegen diese bei 8 in erster Linie von den stärkeren Dipol-Dipol-Wechselwirkungen verursacht wird.

Konfigurationsaspekte

Aufgrund der inherenten Dissymmetrie des 2,3-Dihydrobilin-1,19-dions sind hinsichtlich der exocyclischen Doppelbindungen insgesamt acht Diastereomere möglich. Abb. 3 faßt die globalen Minima im Konformationsraum dieser Diastereomeren von 3 zusammen, welche jeweils durch ihre Konformation an den drei exocyclischen Einfachbindungen charakterisiert sind.

Wie zu erwarten, ist das stabilste Diastereomere jenes mit der (Z,Z,Z)-Konfiguration. Das (15E)-Diastereomere ist um etwa 18 kJ/mol stabiler als das (4E)-Diastereomere. Ersteres hat eine 14-synclinale Konformation, was ebenfalls mit experimentellen Daten [12, 21] übereinstimmt. Neben seiner kinetischen Labilität gibt es demnach für die Instabilität des (4E)-Diastereomeren auch eine Begründung in der thermodynamischen Situation.

Für das (9E)-Diastereomere wird eine all-sp Konformation als globales Minimum aufgefunden. Sein entsprechendes 5-sp, 10-ac, 14-sp-Konformer, das durch die Torsionswinkel a = 9, $\beta = 36$ und $\gamma = 11$ Grad charakterisiert ist, weist eine Destabilisierung von $32 \, \text{kJ/mol}$ gegenüber dem globalen Minimum auf. Gegenüber dem globalen Minimum des (Z,Z,Z)-Diastereomeren ergibt sich dann eine Destabilisierung von etwa $80 \, \text{kJ/mol}$. Diese Anordnung liegt als überwiegende Population in Lösungen von 3 in Hexamethylphosphorsäureamid vor [22]. Dieses

Abb. 3. Relative Energien (kJ/mol) und Geometrien (Positionen 5, 10, 14; a, β , γ) der acht Diastereomeren (Positionen 4, 9, 15) von 3

Lösungsmittel bringt demnach offenbar einen entsprechenden Stabilisierungsbeitrag aus Wasserstoffbrückenbindungen auf, um 3 aus der (Z,Z,Z)-sp,sp-sp-sp,sp-sp-sp-ac,sp-Anordnung zu transformieren.

Die Rechnungen wurden am Interfakultären Rechenzentrum der Johannes-Kepler-Universität Linz (BASF 7/78) ausgeführt.

Literatur

- [1] 80. Mitt.: Falk H., Flödl H. (1989) Monatsh. Chem. 120: 45
- [2] Falk H., Höllbacher G., Hofer O. (1979) Monatsh. Chem. 110: 1025
- [3] Falk H., Müller N. (1983) Tetrahedron 39: 1875
- [4] Falk H., Höllbacher G., Hofer O., Müller N. (1981) Monatsh. Chem. 112: 291
- [5] Falk H., Streßler G., Müller N. (1988) Monatsh. Chem. 119: 505
- [6] Falk H., Müller N. (1981) Monatsh. Chem. 112: 1325
- [7] Falk H., Müller N. (1981) Monatsh. Chem. 112: 791
- [8] Für Übersichten siehe: Kendrick R. E., Kronenberg G. H. M. (eds.) (1986) Photomorphogenesis in Plants. Martinus Nijhoff, Dordrecht
- [9] Kratky C., Falk H., Grubmayr K., Zrunek U. (1985) Monatsh. Chem. 116: 761
- [10] D'Ans; Lax: Taschenbuch für Chemiker und Physiker. 3. Band: Schäfer K., Synowietz C. (eds.) (1970) Eigenschaften von Atomen und Molekeln. Springer, Berlin Heidelberg New York, p. 309
- [11] Falk H., Grubmayr K., Kapl G., Zrunek U. (1982) Monatsh. Chem. 113: 1329
- [12] Falk H., Gsaller H., Hubauer E., Müller N. (1985) Monatsh. Chem. 116: 939
- [13] Falk H., Kapl G., Müller N., Zrunek U. (1984) Monatsh. Chem. 115: 1443
- [14] Falk H., Grubmayr K., Müller N., Vormayr G. (1985) Monatsh. Chem. 116: 53
- [15] Falk H., Grubmayr K., Magauer K., Müller N., Zrunek U. (1983) Isr. J. Chem. 23: 187
- [16] Falk H., Müller N., Vormayr G. (1984) Org. Magnet. Res. 22: 576
- [17] Falk H., Grubmayr K., Kapl G., Müller N., Zrunek U. (1983) Monatsh. Chem. 114: 753
- [18] Grubmayr K., Widhalm M. (1987) Monatsh. Chem. 118: 837
- [19] Falk H., Kapl G., Medinger W. (1985) Monatsh. Chem. 116: 1065
- [20] Schirmer T., Bode W., Huber R. (1987) J. Mol. Biol. 196: 677
- [21] Wagner U., Kratky C., Falk H., Kapl G. (1986) Monatsh. Chem. 117: 1413
- [22] Falk H., Müller N., Wansch S. (1985) Monatsh. Chem. 116: 1605
- [23] Müller N., Falk A. (1988) Computer-Programm "Ball & Stick" für den Macintosh Computer. Linz

Eingegangen 8. Juni 1988. Angenommen 30. Juni 1988